Publications

Experimental studies

mouse

cat

I examined how visual experience alters orientation maps in the developing visual cortex, using newly fabricated goggl1es, which are stably mounted on the head of animals and easily detachable for daily care. We found that iso-orientation domains representing the experienced orientation expanded and occupied large cortical territory after 1 or 2 weeks of goggle rearing on kittens of the age of 3-8 weeks. We obtain a sensitive-period profile of orientation selectivity, which indicates that the critical period for orientation plasticity spans from postnatal 10 to 50 days. A similar experiment using two-photon calcium imaging was conducted on the visual cortex of the rodent, which has a sault-and-pepper like orientation representation distinct from orientation maps in cats and macaque monkeys. We found significant increase in the number of neurons selective for the experienced orientation.

  1. Yoshida T, Ozawa K, Tanaka S. Sensitivity profile for orientation selectivity in the visual cortex of goggle-reared mice. PLoS One. 7(7): e40630. Epub 2012 Jul 6 (2012).
  2. Tanaka S, Tani, T, Ribot J, O’Hashi K, Imamura K. A postnatal critical period for orientation plasticity in the cat visual cortex. PLoS ONE, 4 e5380 (2009).
  3. Tanaka S, Tani T, Ribot J, Yamazaki T. Chronically mountable goggles for persistent exposure to single orientation. Journal of Neuroscience Methods, 160: 206-214 (2007).
  4. O’Hashi K, Miyashita M, Tanaka S. Experience-dependent orientation plasticity in the visual cortex of rats chronically exposed to a single orientation. Neuroscience Research, 58: 86-90 (2007).
  5. Tanaka S, Ribot J, Imamura, K, Tani, T. Orientation-restricted continuous visual exposure induces marked reorganization of orientation maps in early life. NeuroImage 30: 462 – 477 (2006).
  6. Tanaka S, Ribot J, Miyashita M. Roles of visual experience and intrinsic mechanism in the activity-dependent self-organization of orientation maps: Theory and experiment. Neural Networks, 17: 1363–1375 (2004).

Theoretical studies of activity-dependent self-organization

  1. Meng Y, Tanaka S, Poon C-S. Comment on “Universality in the evolution of orientation columns in the visual cortex”. Science, Apr 27; 336: 413 (2012).
  2. Tanaka S, Moon C-H, Fukuda M, Kim S-G. Three-dimensional visual feature representation in the primary visual cortex. Neural Networks, 24: 1022–1035 (2011).
  3. Tanaka S, Miyashita M. Constraint on the number of synaptic inputs to a visual cortical neuron controls receptive field formation. Neural Computation, 21: 2554-80 (2009).
  4. Iannella N, Tanaka S. Synaptic efficacy cluster formation across the dendrite via STDP. Neuroscience Letters, 403: 24-29 (2006).
  5. Nakagama H, Tani T, Tanaka S. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex. Neuroscience Research, 55: 370–382 (2006).
  6. Tozaki H, Tanaka S, Hirata T. Theoretical consideration of olfactory axon projection with an activity-dependent neural network model. Molecullar and Cellular Neuroscience, 26: 503-517 (2004).

Theoretical studies of time interval representation in the cerebellum

  1. Honda T, Yamazaki T, Tanaka S,Nagao S, Nishino T. Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a spiking network model of the cerebellar granular layer. PLoS Computational Biology, 7 (7): e1002087 (2011).
  2. Yamazaki T, Tanaka S. Computational models of timing mechanisms in the cerebellar granular layer. Cerebellum. 8: 423-432 (2009).
  3. Yamazaki T, Tanaka S. A spiking network model for passage-of-time representation in the cerebellum. Eurropean Journal of Neuroscience, 26: 2279–2292 (2007).
  4. Yamazaki T, Tanaka S. The cerebellum as a liquid state machine. Neural Networks, 20: 290–297 (2007).
  5. Yamazaki T, Tanaka S. Neural modeling of an internal clock. Neural Computation, 17: 1032–1058 (2005).

Original papers

  1. Takahata et al., Identification of ocular dominance domains in New World owl monkeys by immediate-early gene expression. Proc Natl Acad Sci USA, (2014) 111 (11): 4297-4302.
  2. Yoshida T, Ozawa K, Tanaka S. Sensitivity profile for orientation selectivity in the visual cortex of goggle-reared mice. PLoS One. 7(7): e40630. Epub 2012 Jul 6 (2012).
  3. Meng Y, Tanaka S, Poon C-S. Comment on “Universality in the evolution of orientation columns in the visual cortex”. Science, Apr 27; 336: 413 (2012).
  4. Tani T, Ribot J, O’Hashi K, Tanaka S. Parallel development of orientation maps and spatial frequency selectivity in cat visual cortex. European Journal of Neuroscience, 35: 44-55 (2012).
  5. Tanaka S, Moon C-H, Fukuda M, Kim S-G. Three-dimensional visual feature representation in the primary visual cortex. Neural Networks, 24: 1022–1035 (2011).
  6. Honda T, Yamazaki T, Tanaka S,Nagao S, Nishino T. Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a spiking network model of the cerebellar granular layer. PLoS Computational Biology, 7 (7): e1002087 (2011).
  7. Iannella N, Launey T, Tanaka S. Spike timing-dependent plasticity as the origin of the formation of synaptic efficacy clusters. Frontiers in Computational Neuroscience, 4: 21 (2010).
  8. Suzurikawa J, Tani T, Nakao M, Tanaka S, Takahashi H. Voltage-sensitive-dye imaging of microstimulation-evoked neural activity through intracortical horizontal and callosal connections in cat visual cortex. Journal of Neural Engineering, 6 (6): 066002 (2009).
  9. Tanaka S, Miyashita M. Constraint on the number of synaptic inputs to a visual cortical neuron controls receptive field formation. Neural Computation, 21: 2554-80 (2009).
  10. Yamazaki T, Tanaka S. Computational models of timing mechanisms in the cerebellar granular layer. Cerebellum. 8: 423-432 (2009).
  11. Imamura K., Onoe H., Shimazawa M., Nozaki S., Wada Y., Kato K., Nakajima H., Mizuma H., Onoe K., Taniguchi T., Sasaoka M., Hara H., Tanaka S., Araie M., and Watanabe Y. Molecular imaging reveals unique degenerative changes in experimental glaucoma. Neuroreport, 20: 139-144 (2009). [PMID: 19057418]
  12. Tanaka S, Tani, T, Ribot J, O’Hashi K, Imamura K. A postnatal critical period for orientation plasticity in the cat visual cortex. PLoS ONE, 4 e5380 (2009).
  13. Yamazaki T, Tanaka S. Robust reservoir generation by correlation-based learning. Advance in Artificial Neural Systems, doi:10.1155/2009/467128 (2009).
  14. Ribot J, Tanaka S, O’Hashi K, Ajima A. Anisotropy in the representation of direction preferences in cat area 18. European Journal of Neuroscience, 27: 2773–2780 (2008). [PMID:18489580]
  15. Yoshida T, Sakagami M, Katura T, Yamazaki K, Tanaka S, Iwamoto M, Tanaka N. Anisotropic spatial coherence of ongoing and spontaneous activities in auditory cortex. Neuroscience Research, 61: 49–55 (2008).
  16. Iannella, N, Tanaka S. Analytical solution for nonlinear cable equations with calcium dynamics. II. Saltatory transmission in a sparsely excitable cable model. Joutnal of Integrative Neuroscience, 6: 241-277 (2007).
  17. Yamazaki T, Tanaka S. A spiking network model for passage-of-time representation in the cerebellum. Eurropean Journal of Neuroscience, 26: 2279–2292 (2007).
  18. Imamura K, Kasamatsu T, Tanaka S. Neural plasticity maintained high by activation of cyclic AMP-dependent protein kinase: An age-independent, general mechanism in cat striate cortex. Neuroscience, 147: 508-521 (2007).
  19. Yamazaki T, Tanaka S. The cerebellum as a liquid state machine. Neural Networks, 20: 290–297 (2007).
  20. Tanaka S, Tani T, Ribot J, Yamazaki T. Chronically mountable goggles for persistent exposure to single orientation. Journal of Neuroscience Methods, 160: 206-214 (2007).
  21. O’Hashi K, Miyashita M, Tanaka S. Experience-dependent orientation plasticity in the visual cortex of rats chronically exposed to a single orientation. Neuroscience Research, 58: 86-90 (2007).
  22. Tsytsarev V, Taketani M, Schottler F, Tanaka S, Hara M. A new planar multielectrode array: recording from a rat auditory cortex. Journal of Neural Engineering, 3: 293–298 (2006).
  23. Iannella N, Tanaka S. Analytical solutions for nonlinear cable equations with calcium dynamics I: derivations. Journal of Integrative Neuroscience, 5: 249-272 (2006).
  24. Iannella N, Tanaka S. Synaptic efficacy cluster formation across the dendrite via STDP. Neuroscience Letters, 403: 24-29 (2006).
  25. Tanaka S, Ribot J, Imamura, K, Tani, T. Orientation-restricted continuous visual exposure induces marked reorganization of orientation maps in early life. NeuroImage 30: 462 – 477 (2006).
  26. Nakagama H, Tani T, Tanaka S. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex. Neuroscience Research, 55: 370–382 (2006).
  27. Imamura K, Tanaka S, Ribot J, Kobayashi M, Nakadate K, Watanabe Y. Preservation of functional architecture in visual cortex of cats with experimentally induced hydrocephalus. European Journal of Neuroscience, 23: 2087–2098 (2006).
  28. Ribot J, Tanaka S, Tanaka H, Ajima A. On-line analysis method for intrinsic signal optical imaging. Journal of Neuroscience Methods, 153: 8–20 (2006).
  29. Ajima A, Tanaka S. Spatial patterns of excitation and inhibition evoked by lateral connections. Cereberal Cortex, 16:1202-1211 (2006).
  30. Yamazaki T, Tanaka S. Building the cerebellum in a computer. Lecture Notes in Computational Science, 3696: 71-77 (2005).
  31. Yamazaki T, Tanaka S. A neural network model for trace conditioning. International Journal of Neural Systems, 15: 23–30 (2005).
  32. Yamazaki T, Tanaka S. Neural modeling of an internal clock. Neural Computation, 17: 1032–1058 (2005).
  33. Tanaka S, Ribot J, Miyashita M. Roles of visual experience and intrinsic mechanism in the activity-dependent self-organization of orientation maps: Theory and experiment. Neural Networks, 17: 1363–1375 (2004).
  34. Tytsarev V, Yamazaki T, Ribot J, Tanaka S. Sound frequency representation in cat auditory cortex. NeuroImage, 23: 1246– 1255 (2004).
  35. Tozaki H, Tanaka S, Hirata T. Theoretical consideration of olfactory axon projection with an activity-dependent neural network model. Molecullar and Cellular Neuroscience, 26: 503-517 (2004).
  36. Nakagama H, Tanaka S. Self-organization model of cytochrome oxidase blobs and ocular dominance columns in the primary visual cortex. Cereberal Cortex, 14: 376-386 (2004).
  37. Lee S-G, Tanaka S, Kim S. Orientation tuning and synchronization in the hypercolumn model. Physical Review E, 69: 011914(11) (2004).
  38. Iannella N, Tuckwell HC, Tanaka S. Firing properties of a stochastic PDE model of a rat sensory cortex layer 2/3 pyramidal cell. Mathematical Bioscience, 188: 117-132 (2004).
  39. Tani T, Yokoi I, Ito M, Tanaka S, Komatsu H. Functional organization of the cat visual cortex in relation to the representation of a uniform surface. Journal of Neurophysiology, 89: 1112-1125 (2003).
  40. Tsytsarev V, Tanaka S. Intrinsic optical signals from rat primary auditory cortex in response to sound stimuli presented to contralateral, ipsilateral and bilateral ears. NeuroReport, 13: 1661-1666 (2002).
  41. Cateau H, Tanaka S. Kinetic analysis of multisite phosphorylation using analytic solutions to Michaelis-Menten equations. Journal of Theoretical Biology, 217: 1-14 (2002).
  42. Nakagama H, Saito T, Tanaka S. Effect of imbalance in activities between ON- and OFF-center LGN cells on orientation map formation. Biological Cybernetics, 83: 85-92 (2000).
  43. Sakai K., Tanaka S. Perceptual segmentation and neural grouping in tilt illusion. Neurocomputing, 32-33, 979-986 (2000).
  44. Ohki K., Matsuda Y., Ajima A., Kim D-S., Tanaka S. Arrangement of Orientation Pinwheel Centers around Area 17/18 Border in Cat Visual Cortex. Cereberal Cortex, 10: 593-601 (2000).
  45. Sakai K, Tanaka S. Spatial pooling in the second-order spatial structure of cortical complex cells. Vision Research, 40: 855-871 (2000).
  46. Ajima A, Matsuda, Y, Ohki K, Kim D-S, Tanaka S. GABA-mediated representation of temporal information in rat barrel cortex. NeuroReport, 10: 1973-1979 (1999).
  47. Kim D-S, Matsuda Y, Ohki K, Ajima A, Tanaka S. Geometrical and topological relationships between multiple functional maps in cat primary visual cortex. NeuroReport, 10: 2515-2522 (1999).
  48. Asai T, Fukai T, Tanaka S. A subthreshold CMOS circuit for the Lotka-Volterra neural network producing the winner-share-all solution. Neural Networks, 12: 211-216 (1999).
  49. Tanaka S. Topology of visual cortical maps. FORMA, 12: 101-106 (1997).
  50. Plesse HE, Tanaka S. Stochastic resonance in a model neuron with reset. Physics Letters A, 225: 228-234 (1997).
  51. Miyashita M, Kim D-S, Tanaka S. Cortical direction selectivity without directional experience. NeuroReport, 8: 1187-1191 (1997).
  52. Fukai T, Tanaka S. A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all, Neural Computation, 9: 77-97 (1997).
  53. Tanaka Y, Tanaka S. Positive feedback model for city vitalization. International Journal of Japanese Sociology, 5: 107-122 (1996).
  54. Tanaka S. Topology-based approach to the understanding of visual information representation. RIKEN Review, 9: 39-40 (1995).
  55. Tanaka S. Topological analysis of point singularities in stimulus preference maps of the primary visual cortex. Proceedings of Royal Society Lond B, 261: 81-88 (1995).
  56. Tanaka S, Shinbata, H. Mathematical model for self-organization of direction columns in MT area. Biological Cybernetics, 70: 227-234 (1994).
  57. Miyashita M, Tanaka S. Self-organization of topology-preserving maps: effects of initial rough topography and synaptic plasticity. NEC Research and Development, 34: 12-22 (1993).
  58. Tanaka S, Shinbata, H A mathematical model for neuronal response properties and modular organization in the motion-processing area of the primate cerebral cortex. NEC Research and Development, 34: 1-11 (1993).
  59. Miyashita M, Tanaka S. A mathematical model for the self-organization of orientation columns in visual cortex. NeuroReport, 3: 625-640 (1992).
  60. Tanaka S. Phase transition theory for abnormal ocular dominance column formation. Biological Cybernetics, 65: 91-98 (1991).
  61. Tanaka S. Theory of ocular dominance column formation – Mathematical basis and computer simulation. Biological Cybernetics, 64: 263-272 (1991).
  62. Tanaka S. Experience-dependent self-organization of biological neural networks. NEC Research and Development, No.98, 1-14 (1990).
  63. Tanaka S. Theory of self-organization of cortical maps: mathematical framework. Neural Networks, 3: 625-640 (1990).
  64. Tanaka S, Sugano S. Energy-level statistics of metallic fine particles: Computer simulations. Physical Review B, 34: 740-747 (1986).
  65. Tanaka S, Sugano S. Energy-level statistics of metallic fine particles: Analytical approach. Physical Review B, 34: 6880-6885 (1986).
  66. Tanaka S, Sugano S. A theoretical approach to rotationally inelastic scattering of a heteropolar rigid rotor by rigid and flat surfaces. Surface Science, 136: 488-502 (1984).
  67. Tanaka S, Sugano S. Effect of initial rotational distribution and softness of surface on inelastic scattering of heteropolar rotor by surfaces. Surface Science, 143: L371-L375 (1984).

Book chapters

  1. Tanaka S. New Pictures of the Structure and Plasticity of Orientation Columns in the Visual Cortex, Visual Cortex – Current Status and Perspectives, Stephane Molotchnikoff and Jean Rouat (Ed.), ISBN: 978-953-51-0760-6, InTech, Available from: http://www.intechopen.com/books/visual-cortex-current-status-and-perspectives/new-pictures-of-the-structure-and-plasticity-of-orientation-columns-in-the-visual-cortex. (2012).
  2. Tanaka S., Ribot J., Imamura K. Effects of chronic exposure to vertical orientation on the development of orientation preference maps. In: The Neural Basis of Early Vision. Kaneko A. (Ed.), Springer-Verlag Tokyo, pp.213 – 216 (2003).
  3. Nakagama H., Tanaka S. Self-organization model of ocular dominance columns and cytochrome oxidase blobs in the primary visual cortex of monkeys and cats. In: The Neural Basis of Early Vision. Kaneko A. (Ed.), Springer-Verlag Tokyo, pp.217-220 (2003).
  4. Iannella N., Ribot J., Tanaka S. Long-range horizontal connections assist the formation of robust orientation maps. In: The Neural Basis of Early Vision. Kaneko A. (Ed.), Springer-Verlag Tokyo, pp. 221 – 224 (2003).
  5. Miyashita M., Tanaka S. Experience-dependent self-organization of visual cortical receptive fields and maps. In: The Neural Basis of Early Vision. Kaneko A. (Ed.), Springer-Verlag Tokyo, pp. 225 – 229 (2003).
  6. Tanaka S. and Tanaka Y. Model of public city image formation based on a positive feedback mechanism. In: COMPLEXITY AND DIVERSITY, E. R. Nakamura (Ed.), Springer-Verlag, Tokyo, pp.199-201 (1997).
  7. Tanaka S. Information representation and self-organization of the primary visual cortex. In: NATURAL AND ARTIFICIAL PARALLEL COMPUTATION, D. L. Waltz (Ed.), SIAM, pp. 93-126 (1996).
  8. Tanaka S. Self-organization of functional architecture in the cerebral cortex. In: NEURAL NETWORKS FOR PERCEPTION. H. Wechsler (Ed.), Academic Press, pp. 120-144 (1991).
  9. Tanaka S. Energy-level statistics of metal particles. In: MICROCLUSTERS. Y. Nishina, S.Ohnishi and S.Sugano (Ed.), Springer-Verlag Berlin Heidelberg, pp. 220-225 (1987).